Biyani Girls college, Jaipur

Model Paper-A (M.Sc. I)

Subject:Mathematics

Paper : I(Abstract Algebra)

Max Marks:100

Max Time: 2:30 hrs

10

Attempt any five questions in all selecting atleast one question from each unit.

UNIT-I

1.a. Let G_1 - and G_2 be groups then show that

 $(i) G_1 X G_2 \cong G_2 X G_1$

(ii) Then the subsets $\hat{G}_1 = \{(a_1, e_2) : a_1 \in G_1\}$ and $\hat{G}_2 = \{(e_1, a_2) : a_2 \in G_2\}$ are normal subgroup of G_1 and G_2 respectively. \hat{G}_1 is isomorphic to G_1 and \hat{G}_2 is isomorphic to G_2 .

b. Let G be a group and suppose G is the internal direct product of subgroups H₁,H₂......H_n. Let

 $G_{=}^{n}H_{1}XH_{2}X....XH_{n}$. Show that G and G^{n} are isomorphic. 10

2a. Let G be a group and H is a subgroup of G. If H is normal subgroup of G and G/H is abelian, then show that $G' \subset H$. *Conversely if* $G' \subset H$, then show that H is normal Subgroup of G. 10

b. Show that any two Subnormal series of a group G have subnormal refinements that are equivalent .10

UNIT-II

3a. Prove that the ring of all Gaussian integer Z[i] is a Euclidean Ring. 10

b. Let N,K be the Sub modules of the R – Module M. Then Prove $\frac{(N+K)}{K} \cong \frac{N}{N \cap K}$ 10

4a. Let V and V' be vector spaces over the same field F s.t. the dimension of V is finite .Let $t: V \to V'$ be a linear transformation ,then prove that : dim V = rank(t) + nullity (t) 10

b. Let V be n-dimensional vector spaces over a field F. Let $B = \{b_1, b_2, \dots, b_n\}$ be a basis of V then prove that the dual space V^{*} of V has basis $B^* = \{f_1, f_2, \dots, f_n\}$ such that $f_i(b_j) = \delta_{ij}$: $i, j = 1, 2, \dots, n$ where $\delta_{ij} \in F$ is Kronecker Delta 10

<u>UNIT-III</u>

5a. Let $\frac{K}{F}$ be a field extension. Then prove that an element $a \in K$ is algebraic over F iff F(a) is finite extension of F. 10

b. Prove that an irreducible polynomial f(x) over a field F of Characteristic p>0 is inseparable iff f(x) is a polynomial in x^p . 10

6a. Let G be a finite group of automorphism of a field K. Let F be the fixed field of G that is :

 $F = \{x \in K | \phi(x) = x, for all \phi \in G\}$. Then prove that K is Galois extension of F with $G(K/F) = G_{10}$.

b. Prove that the general polynomial equation of degree n is not solvable by radicals for $n \ge 5$. 10

UNIT-IV

7a. If a square matrix A of order n, over a field F, has n distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$ then there is an invertible matrix P such that $P^{-1}AP = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$ 10

b. Let V be an n-dimensional vector spaces over a field F and V be an m-dimensional vector space over F. Then show that : $Hom(V,V') \cong M_{m \times n}(F)$. 10

8a. Let $f: (F^n)^n \to F$ be a multilinear alternating form. Then show that for any n x n matrix $A = [a_{ij}] over F. f(A) = det(A) f(I)$ where I is n x n identity matrix. 10

b. Let A be an n x n identity matrix over a field F. $det(A - \lambda I) = f(\lambda) = a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0 \text{ be a characteristic polynomial of A. Then show that: } f(A) = a_n A^n + a_{n-1} A^{n-1} + \dots + a_1 A + a_0 I = 0$ 10

UNIT-V

9a. Let V be inner product space . Then for all $u, v \in V$ and $\alpha \in R$ Prove that

 $(i) \|\alpha u\| = |\alpha| \|u\| \qquad (ii) \|\|u\| - \|v\| \le \|u - v\|$

b. Let V be an inner product space and A={ v_1, v_2, \dots, v_n } be an orthonormal set in V. Then prove that any vector $v \in V$ the vector : $u = v - \sum_{i=1}^n v_i < v, v_j > is$ orthogonal to each v_j , j=1,2,3,...,n and consequently to the subspace generated by the orthonormal set A.

10a. Let V be a finite dimensional inner product space and W be its any subspace .Then prove that V is the direct sum of W and W^{\perp} ie. $V = W \oplus W^{\perp}$ when W^{\perp} is orthogonal complement of W.

b. Let V and V' be inner product spaces. Then prove that a linear transformation $t: V \to V'$ is orthogonal iff : ||t(u)|| = ||u|| for all $u \in V$.